The Probability That A Numerical Analysis Problem Is Difficult
نویسنده
چکیده
Numerous problems in numerical analysis, including matrix inversion, eigenvalue calculations and polynomial zerofinding, share the following property: The difficulty of solving a given problem is large when the distance from that problem to the nearest "ill-posed" one is small. For example, the closer a matrix is to the set of noninvertible matrices, the larger its condition number with respect to inversion. We show that the sets of ill-posed problems for matrix inversion, eigenproblems, and polynomial zerofinding all have a common algebraic and geometric structure which lets us compute the probability distribution of the distance from a "random" problem to the set. From this probability distribution we derive, for example, the distribution of the condition number of a random matrix. We examine the relevance of this theory to the analysis and construction of numerical algorithms destined to be run in finite precision arithmetic.
منابع مشابه
A Chance Constraint Approach to Multi Response Optimization Based on a Network Data Envelopment Analysis
In this paper, a novel approach for multi response optimization is presented. In the proposed approach, response variables in treatments combination occur with a certain probability. Moreover, we assume that each treatment has a network style. Because of the probabilistic nature of treatment combination, the proposed approach can compute the efficiency of each treatment under the desirable reli...
متن کاملEffects of Probability Function on the Performance of Stochastic Programming
Stochastic programming is a valuable optimization tool where used when some or all of the design parameters of an optimization problem are defined by stochastic variables rather than by deterministic quantities. Depending on the nature of equations involved in the problem, a stochastic optimization problem is called a stochastic linear or nonlinear programming problem. In this paper,a stochasti...
متن کاملProbabilistic design: The future of rock engineering
A brief background to the development of the rock engineering design process is given, showing that since the development of the science of mathematics, deterministic methods have been used to perform various calculations. The variability of rock properties and support characteristics have always been known. However, they were not explicitly used in design but compensated for by the use of a sa...
متن کاملSolving a Two-Period Cooperative Advertising Problem Using Dynamic Programming
Cooperative advertising is a cost-sharing mechanism in which a part of retailers' advertising investments are financed by the manufacturers. In recent years, investment among advertising options has become a difficult marketing issue. In this paper, the cooperative advertising problem with advertising options is investigated in a two-period horizon in which the market share in the second period...
متن کاملOptimization of the Inflationary Inventory Control Model under Stochastic Conditions with Simpson Approximation: Particle Swarm Optimization Approach
In this study, we considered an inflationary inventory control model under non-deterministic conditions. We assumed the inflation rate as a normal distribution, with any arbitrary probability density function (pdf). The objective function was to minimize the total discount cost of the inventory system. We used two methods to solve this problem. One was the classic numerical approach which turne...
متن کاملUnscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کامل